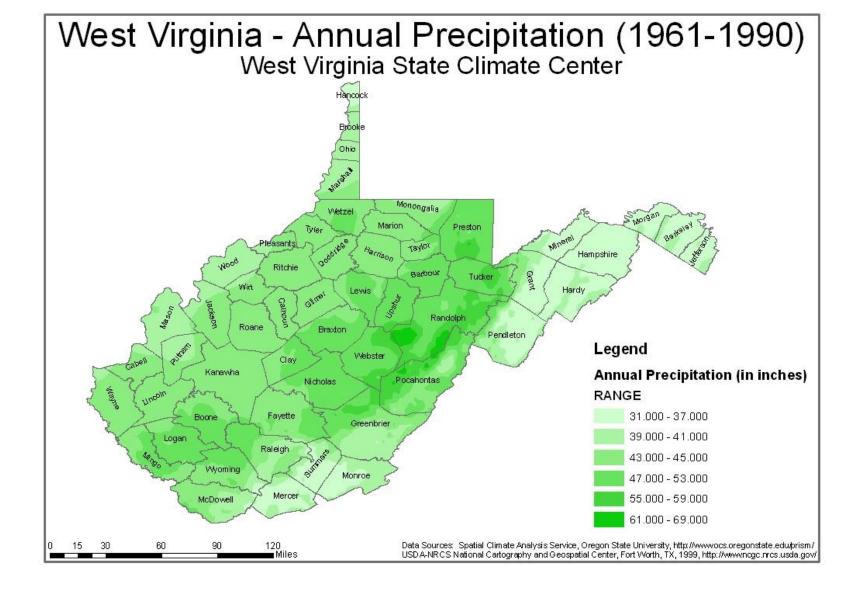
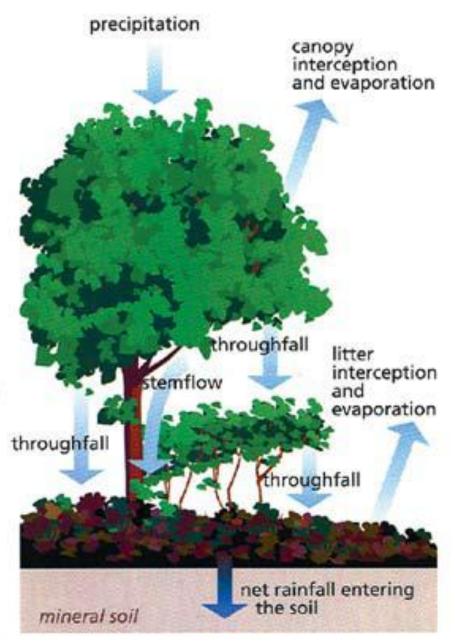

A MEW Approach


WATERSHED-BASED PLANNING

FOR SUSTAINABILITY
OF OUR WATER RESOURCES

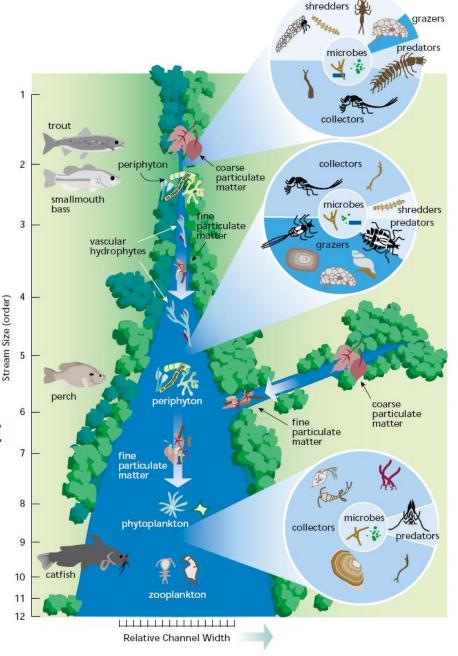


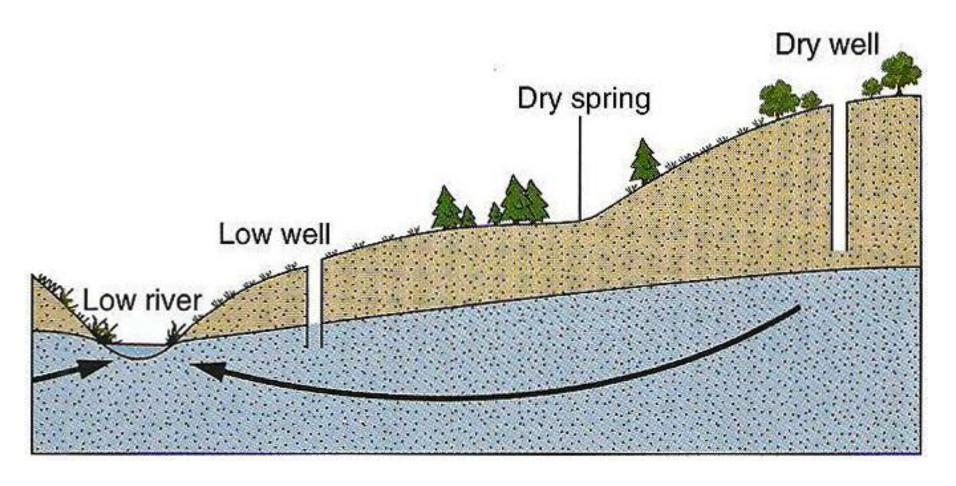
Our Water Is Finite On Our Continents

Units are in centimeters per year. Diagram by Dennis L. Hartmann, Global Physical Climatology, 1994.

PRECIPITATION is **GREATEST** on the **MOUNTAINS**

Mountain FORESTS INTERCEPT RAINFALL


Allowing Rainfall to GENTLY REACH THE GROUND


Thus Allowing
LESS SURFACE RUNOFF
and
GREATER GROUNDWATER
RECHARGE

MOUNTAIN RIDGE HEADWATER AREAS ARE UNIQUE

MOUNTAIN RIDGE DEFORESTATION:

- 1) INCREASES LIGHT AND WATER TEMPERATURES
- 2) DESTROYS HEADWATER AREAS
- 3) INCREASES SURFACE RUNOFF and DECREASES GROUNDWATER RECHARGE
- 4) INCREASES EROSION AND SEDIMENTATION DOWNSTREAM

STREAMS and GROUNDWATER are INTER-RELATED and INSEPARABLE

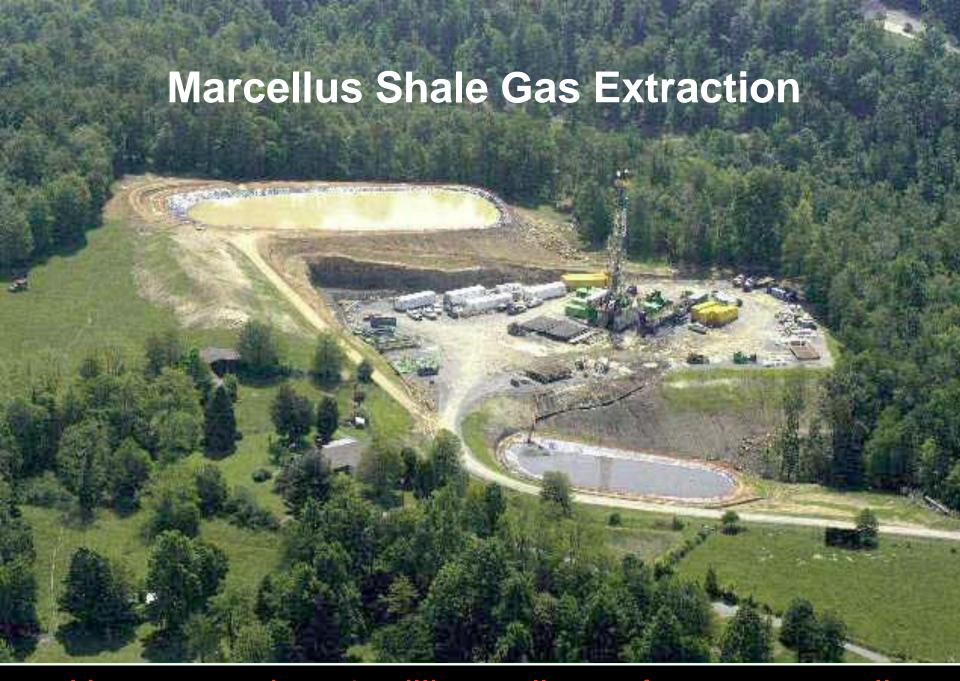
GROUNDWATER replenishes stream water during times of low water.

STREAMFLOW HAS INCREASED

Due to OVER-DEVELOPMENT

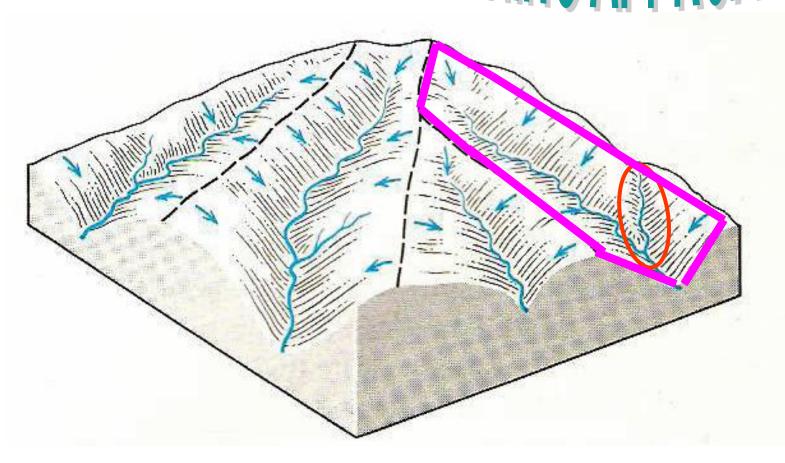
Table 1.2 Average Annual Streamflow for Potomac River @ Hancock Maryland

able 1.2 Average Annuai Streamnow for Fotomac River @ Hancock Maryland									
1933-2003									
Year	Annual mean	Year	Annual mean	Year	Annual mean	Year	Annual mean		
	Streamflow, in gal/s		Streamflow, in gal/s		Streamflow, in gal/s		Streamflow, in gal/s		
1933	34,991	1951	35,754	1969	13,898	1987	30,219		
1934	17,787	1952	35,769	1970	33,488	1988	24,781		
1935	32,022	1953	29,643	1971	38,978	1989	34,991		
1936	44,611	1954	24,953	1972	56,654	1990	27,661		
1937	45,291	1955	32,703	1973	40,242	1991	24,856		
1938	18,117	1956	30,339	1974	29,972	1992	23,899		
1939	29,583	1957	25,604	1975	42,651	1993	40,414		
1940	32,396	1958	28,865	1976	30,907	1994	43,160		
1941	18,880	1959	19,426	1977	25,148	1995	24,243		
1942	36,667	1960	29,853	1978	38,896	1996	68,075		
1943	27,586	1961	33,204	1979	50,550	1997	27,295		
1944	28,701	1962	29,434	1980	31,790	1998	41,783		
1945	32,149	1963	24,467	1981	22,934	1999	17,024		
1946	23,106	1964	26,614	1982	30,930	2000	20,480		
1947	16,531	1965	24,706	1983	35,231	2001	21,221		
1948	34,827	1966	21,550	1984	40,699	2002	24,101		
1949	34,909	1967	32,875	1985	38,821	2003	61,560		
1950	35,044	1968	25,649	1986	25,469				


MOUNTAINTOP REMOVAL DESTROYS FORESTED RIDGES

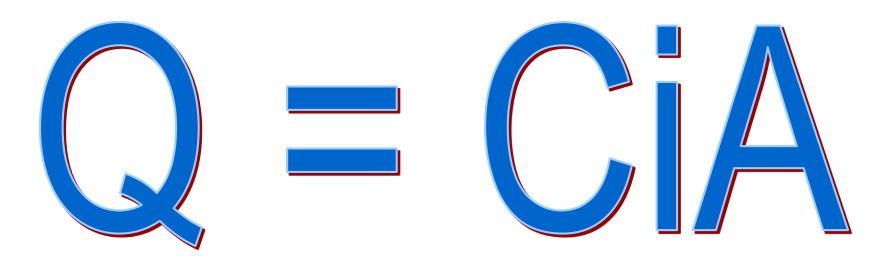
Typical Transmission Line Deforestation and Excavation

Mountaineer Wind Facility, Tucker County, West Virginia


Uses more than 1 million gallons of water per well

Used by permission: C2012 Robert M. Donnan

WATERSHED-BASED PLANNING APPROACH



186 Imparvious Cover

RATIONAL METHOD:

Oldest and most widely used method of calculating peak runoff rates for urban and rural watersheds that are less than 200 acres

"Q" is Discharge

"C" is Runoff Coefficient (e.g. from tables in WVDOH Manual)

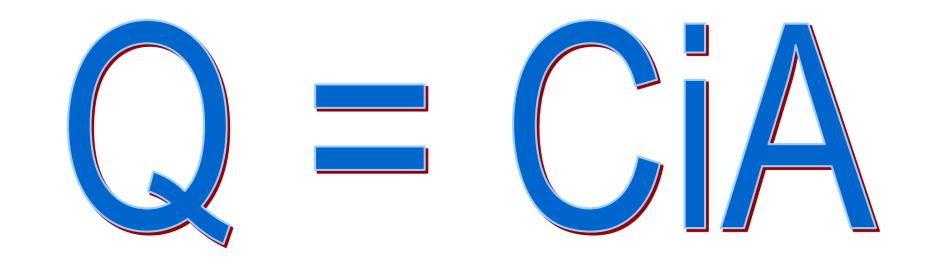
"i" is Rainfall Intensity (from NOAA charts)

"A" is Drainage Area (from GIS or Terrain Navigator)

Table 4-4
Recommended Runoff Coefficient (C) Values

	Runoff Coefficient (C)					
Description of Area	Flat areas Slope 0% to 2%	Moderate areas Slope 2% to 10%	Steep areas Slope Over 10%			
Pavement, Roof surfaces, etc.	0.80	0.90	0.95			
Earth Shoulder	0.55	0.60	0.70			
Gravel or Stone Shoulders	0.45	0.50	0.60			
Grass Shoulders	0.30	0.35	0.40			
Side Slopes–Earth	0.50	0.60	0.70			
Side Slopes-Turf	0.40	0.50	0.65			
Median Strips-Turf	0.30	0.35	0.40			
Dense Residential Areas	0.60	0.65	0.80			
Suburban Areas with Small Yards	0.40	0.50	0.60			
Cultivated Land						
Clay and Loam	0.35	0.50	0.60			
Sand and Gravel	0.25	0.30	0.35			
Woods, Parks, Meadows, and Pasture Land	0.20	0.25	0.35			

CLAY & LOAM


WOODS

Source: WVDOH Drainage Manual, 1984

C = 0.60

C=0.35

Runoff coefficient values represent an empirical, dimensionless ratio between rainfall and runoff.

"i" is the rainfall intensity for a duration equal to the time of concentration for a selected return period, inches per hour (in/hr)

The time of concentration (Tc) is the time required for water to flow from the hydraulically most remote point of the drainage area to the point of interest. With the Rational Method, the duration of a rainfall event is set equal to the time of concentration and it is used to estimate the average rainfall intensity (i) from the intensity-duration-frequency curves (IDF) for a selected return period.

Total Area = Undisturbed Area =

Disturbed Area =

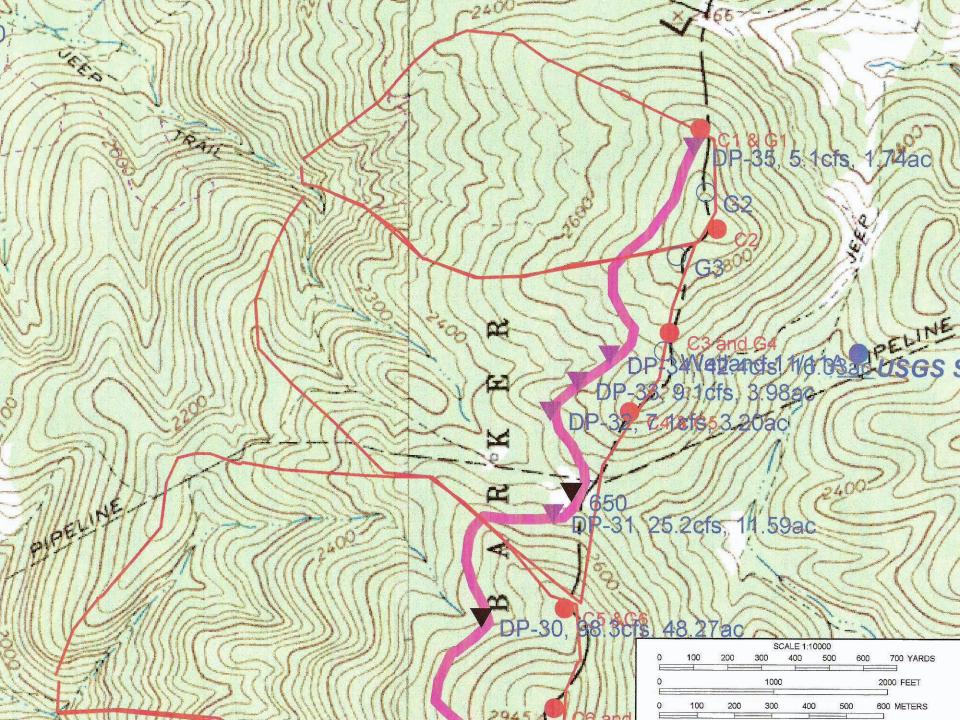
154 acres

112 acres with C=0.35

42 acres with C=0.6

Pre-construction

 $Q = CiA = 0.35 \times 4.6 \times 154 = 247.94 cfs$


10% Impervious Cover = 15 acres

Weighted C = [(139x0.35)+(15x1.0)]/154 = 0.413Q = CiA = 0.413 x 4.6 x 154 = 292.56cfs

Post Construction

Weighted C = [(112x0.35)+(42x0.60)]/154 = 0.418Q = CiA = 0.418 x 4.6 x 154 = 296.11cfs

Conclusion: NEGATIVE IMPACT

PROTECT OUR FORESTED MOUNTAIN RIDGES

TO SAVE OUR WATER