Air, Noise, and Light Monitoring Results For Horizontal Gas Well Drilling Operations

> Michael McCawley, PhD West Virginia University

Disclaimer

The contents of this presentation reflect the views of the authors who are responsible for the facts and the accuracy of the data presented. The contents DO NOT necessarily reflect the official views or policies of the State of West Virginia. This presentation does not constitute a standard, specification, or regulation. Trade or manufacturers' names which may appear herein are cited only because they are considered essential to the objectives of these reports. The State of West Virginia does not endorse products or manufacturers. This presentation was prepared using data from a report prepared for the West Virginia Department of Environmental Protection.

Questions to be Addressed

Are well location restrictions regarding occupied dwelling structures inadequate or otherwise require alteration?

Are further regulations necessary for air pollution occurring from well sites, to address the possible health impacts, the need for air quality inspections during drilling, the need for inspections of compressors, pits and impoundments, and any other potential air quality impacts that could be generated from this type of drilling activity that could harm human health or the environment?

Setback

- From well pad center/not from roads
- Terrain Issues
- Meteorological Issues
- Toxicological Issues

Well Pad Center

Maximum Noise Emission Levels as Required by EPA for In-Use Medium and Heavy Trucks with GVWR Over 4,525 Kilograms Engaged in Interstate Commerce(40CFR202)

Speed	Maximum Noise Level 15 Meters from Centerline of Travel		
< 56 kph	83 dBA		
> 56 kph	87 dBA		
Stationary	85 dBA		

ACTIVITY AT 625 FEET FROM WELL CENTER

Terrain

Meteorology

Toxicology

NAAQS

USEPA National Ambient Air Quality Standards

Pollutant	Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide	primary	8-hour 1-hour	9 ppm 35 ppm	Not to be exceeded more than once per year
<u>Lead</u>	primary and secondary	Rolling 3 month average	0.15 μg/m ³	Not to be exceeded
Nitrogen Dioxide	primary	1-hour	100 ppb	98th percentile, averaged over 3 years
	primary and secondary	Annual	53 ppb	Annual Mean
<u>Ozone</u>	primary and secondary	8-hour	0.075 ppm	Annual fourth-highest daily maximum 8-hr concentration, averaged over 3 years
	primary secondary	Annual	12 μg/m ³	annual mean, averaged over 3 years
Particle Pollution PM _{2.5}	primary and secondary	24-hour	35 μg/m ³	98th percentile, averaged over 3 years
PM_{10}	primary and secondary	24-hour	150 µg/m³	Not to be exceeded more than once per year on average over 3 years
<u>Sulfur Dioxide</u>	primary	1-hour	75 ppb	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
	secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

Minimal Risk Levels (MRLs) Used for HCs

- Developed by Agency for Toxic Substances and Disease Registry (ATSDR)
- Similar in value and use to RfCs
- Used as screening values to identify chemicals of potential health concern at hazardous waste sites
- Not intended as precise values above which adverse health effects will occur
- Indicates that further evaluation of the exposure scenario and potentially
 exposed population may be warranted
- The more often the MRL is exceeded and the greater the magnitude of the value by which the MRL is exceeded, the greater the likelihood that an adverse health outcome will occur
- Three distinct exposure scenarios: acute (14 days or less), intermediate (15-364 days), and chronic (365 days or more)
- Development process entails internal peer review, external peer review, and an opportunity for public comment

HAZARD QUOTIENT = EXPOSURE/MRL

Monitoring

• WVU

PM2.5 (Dust), HCs, Light, Ionizing Radiation and Noise at multiple locations at each site

• DOE

PM10, PM2.5, HCs, Light, O3, SO2, NOx, OC/EC, NH3, CO2(and isotopes), CH4(and isotopes) at a single location at each site

24 Hour Averages Measured by TEOM

	<u>PM10 (μg/m3)</u>	PM2.5 (μg/m3)
NAAQS 24 Hour Standard	<u>150</u>	<u>35</u>
Donna Pad	12-29	6-15
Weekley Pad	9-32	5-20
Mills-Wetzel Pad 2	9-54	6-17
Maury Pad	9-90	5-24
Lemons Pad	5-24	3-13
WVDNR Pad	2-50	1-13

Gases

	Donna	Weekley		lls Wetzel	Lemons	
	WVDNR					
O3(8 hr avg)	9-56 ppb ppb	4-78 ppb	20-67 ppb	2-69 ppb	11-61 ppb	14-56
NOx(1 hr						
avg)	1.3-30 ppb	3.4-12ppb	7.8-38 ppb	23-138 ppb	9-151 ppb	-
CH4(6 day	2.1ppm ppm	2.0 ppm	2.0 ppm	2.0 ppm	2.1 ppm	1.9
avg)	1.9-10.4ppb	1.1-12.4ppb	1.6-8.4 ppb	1.1-9.6 pp	b 1.7-3.7 ppb	2.1-5.3
SO2(3 hr avg)	ррь					

PM 2.5

Comparison of Particle Monitors after 1 year in field

Dust Track 1 (ug/m3)

MiniRAE 3000 (C)

Summa Canister – 3 day average by EPA Method TO 15 (Rpt. limit 0.5ppb Benzene)

CHRONIC MRL HAZARD

QUOTIENTS	site	RESULTS ppb(v)	RESULTS (ug/m3)	Hazard Quotient	COMPOUND NAME
Lewis Wetzel Three	4	1.1	3.6	0.4	Benzene
Lewis Wetzel Three	4	1.0	3.3	0.3	Benzene
Lewis Wetzel Three	4	0.78	2.5	0.3	Benzene
Lewis Wetzel Two	3	3.0	9.7	1.0	Benzene
Lewis Wetzel Two	3	2.4	7.8	0.8	Benzene
Lewis Wetzel Two	3	2.4	7.7	0.8	Benzene
Lewis Wetzel Two	3	2.1	6.7	0.7	Benzene
MAURY (Fracking)	5	85	270	28.3	Benzene
MAURY (Fracking)	5	49	160	16.3	Benzene
MAURY (Fracking)	5	12	39	4.0	Benzene
WEEKLEY (Fracking)	2	8.2	26	2.7	Benzene
WEEKLEY	2	4.5	14	1.5	Benzene
WEEKLEY	2	4.2	13	1.4	Benzene
WEEKLEY	2	3.9	12	1.3	Benzene
WEEKLEY	2	2.9	9.2	1.0	Benzene
WVDNR (Horizontal Drill)	7	13	41	4.3	Benzene
WVDNR	7	3.0	9.5	1.0	Benzene
DONNA	1	2.2	7.0	0.7	Benzene
DONNA	1	2.1	6.8	0.7	Benzene
DONNA	1	1.7	5.3	0.6	Benzene
LEMON (Vertical Drill)	6	15	48	5.0	Benzene
CHRONIC MRL = 3ppb; INTERMEDIATE = 6 ppb; ACUTE =					
pp165 days +	1	14-	364 days	11	I-14 days

9

NOISE

EPA has identified a 24-hour exposure level of 70 decibels as the level of • environmental noise which will prevent any measurable hearing loss over a lifetime

	<u>dBA</u>		<u>dBA</u>		<u>dBA</u>
Quiet Room	28-33	Printer	58-65	Garbage Disposal	76-83
Whisper, Quiet Library at 6'	30	Normal conversation at 3'	60-65	Air Popcorn Popper	78-85
Computer	37-45	Window Fan on High	60-66	City Traffic (inside car)	85
Refrigerator	40-43	Alarm Clock	60-80	Jackhammer at 50'	95
Typical Living Room	40	Dishwasher	63-66	Snowmobile, Motorcycle	100
Forced Hot Air Heating		Clothes Washer	65-70	12 Gauge Shotgun Blast	165
System	42-52	Phone	66-75		
Clothes Dryer	56-58	Push Reel Mower	68-72		
		Inside Car, Windows Closed,			
		30 MPH	68-73		
		Handheld Electronic Games	68-76		
		Kitchen Exhaust Fan, High	69-71		
		Inside Car, Windows Open,			
		30 MPH	72-76		
Increase	ed risk o	f cardiovascular disease –	66-70dB	A	
Increase	ed risk o	f hypertension -	66-70dB	A	

NOISE

AVERAGE FOR ENTIRE SAMPLING PERIOD

	Donna	Mills Wetzel 2	Mills Wetzel 3	Maury Lemon
Mean (dBA) 54	52	65	64	58
Standard Deviation	10	10	8	6 4

LIGHT

Illuminance

Surfaces illuminated by:

0.002 lux 0.27–1.0 lux 3.4 lux sky $50 \, \text{lux}$ 80 lux 100 lux (1 W/m2) 320–500 lux Office lighting 400 lux 1,000 lux 10,000–25,000 lux 32,000–130,000 lux Illuminance (lux) 80000 60000 40000 20000 0 0 56 64 72 80 48 88 96 8 16 24 32 40

Time (hours)

Moonless clear night sky Full moon on a clear night Dark limit of civil twilight under a clear

Family living room Office building hallway Very dark overcast day Sunrise or sunset on a clear day. Overcast day Full daylight (not direct sun) Direct sunlight 1000 800 Irradiance (W/m2) 600 400 200

RADIATION

<u>pCi/L</u> 0.4 1.3 4

Risk of cancer equal

<u>M</u>tdoor background exposure risk Indoor background exposure risk Risk of dying in a car crash

NON-DETECTABLE AT ALL PADS

RECOMMENDATIONS

- A definitive sampling and health effects study needs to be done to address the issues of potential exposures from gas drilling and setback limits.
- Air Quality Standards appropriate for assessment of air contaminants from drilling operations need to be developed.
- Currently available IH real-time and/or portable monitors, at "SENSITIVE" sites, could be used by industry for control or feedback and by government for regulation of drilling operations.

RECOMMENDATIONS

- A more definitive sampling and health effects study needs to be done to address the issues of potential exposures from gas drilling.
- Better use of roadway wetting agents would reduce many of the peak dust exposures seen from roadside samples that were taken over the course of the survey.
- Greater spacing of diesel container-trucks while waiting on line for fracking could reduce the local concentration of diesel exhaust and may reduce noise as well.
- Noise reduction, particularly from traffic may be abated by several well-established methods used with highway construction.
- Feedback from real-time and/or portable monitors could be used by industry for control, especially of noise, and by government for regulation.

Acknowledgements

DOE/NETL

- Natalie Pekney

WVDEP

- Renu Chakrabarty
- Tim Carroll

WVU

- Shilpa Gaddala
- Alyson Johnson
- Jennifer Hause
- Paul Ziemkiewicz

Questions?

Michael McCawley Ph.D. Department of Occupational and Environmental Health School of Public Health West Virginia University Morgantown, WV 26506 USA

mamccawley@hsc.wvu.edu 304-293-8042